层次聚类是在不同层次上对数据进行划分,从而形成树状的聚类结构。
AGNES算法是自底向上的层次聚类算法。开始时将数据集中的每个样本初始化为一个簇,然后找到距离最近的两个簇,将他们合并,不断重复这个过程,直达到到预设的聚类数目为止。
计算距离的三个公式:
AGNES算法根据上面个三个不同的公式,相应的被称为均链接,单链接和全链接。
算法步骤如下:
#-*- coding:utf-8 -*- import math import pylab as pl #数据集:每三个是一组分别是西瓜的编号,密度,含糖量 data = """ 1,0.697,0.46,2,0.774,0.376,3,0.634,0.264,4,0.608,0.318,5,0.556,0.215, 6,0.403,0.237,7,0.481,0.149,8,0.437,0.211,9,0.666,0.091,10,0.243,0.267, 11,0.245,0.057,12,0.343,0.099,13,0.639,0.161,14,0.657,0.198,15,0.36,0.37, 16,0.593,0.042,17,0.719,0.103,18,0.359,0.188,19,0.339,0.241,20,0.282,0.257, 21,0.748,0.232,22,0.714,0.346,23,0.483,0.312,24,0.478,0.437,25,0.525,0.369, 26,0.751,0.489,27,0.532,0.472,28,0.473,0.376,29,0.725,0.445,30,0.446,0.459""" #数据处理 dataset是30个样本(密度,含糖量)的列表 a = data.split(',') dataset = [(float(a[i]), float(a[i+1])) for i in range(1, len(a)-1, 3)] #计算欧几里得距离,a,b分别为两个元组 def dist(a, b): return math.sqrt(math.pow(a[0]-b[0], 2)+math.pow(a[1]-b[1], 2)) #dist_min def dist_min(Ci, Cj): return min(dist(i, j) for i in Ci for j in Cj) #dist_max def dist_max(Ci, Cj): return max(dist(i, j) for i in Ci for j in Cj) #dist_avg def dist_avg(Ci, Cj): return sum(dist(i, j) for i in Ci for j in Cj)/(len(Ci)*len(Cj)) #找到距离最小的下标 def find_Min(M): min = 1000 x = 0; y = 0 for i in range(len(M)): for j in range(len(M[i])): if i != j and M[i][j] < min: min = M[i][j];x = i; y = j return (x, y, min) #算法模型: def AGNES(dataset, dist, k): #初始化C和M C = [];M = [] for i in dataset: Ci = [] Ci.append(i) C.append(Ci) for i in C: Mi = [] for j in C: Mi.append(dist(i, j)) M.append(Mi) q = len(dataset) #合并更新 while q > k: x, y, min = find_Min(M) C[x].extend(C[y]) C.remove(C[y]) M = [] for i in C: Mi = [] for j in C: Mi.append(dist(i, j)) M.append(Mi) q -= 1 return C #画图 def draw(C): colValue = ['r', 'y', 'g', 'b', 'c', 'k', 'm'] for i in range(len(C)): coo_X = [] #x坐标列表 coo_Y = [] #y坐标列表 for j in range(len(C[i])): coo_X.append(C[i][j][0]) coo_Y.append(C[i][j][1]) pl.scatter(coo_X, coo_Y, marker='x', color=colValue[i%len(colValue)], label=i) pl.legend(loc='upper right') pl.show() C = AGNES(dataset, dist_avg, 3) draw(C)
这是采用dist_avg函数运行的结果图。
上一个:兰州卖狗的地方(兰州哪有买狗的)